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Model reduction with Reduced Basis Methods

Scenario:

• Parametrized partial differential equations: shape, material or control parameters µ ∈ P ⊂ Rp

u(x, 0;µ) = u0(x;µ) in Ω

∂tu(x, t;µ)− L [u(x, t;µ)] = 0 in Ω× [0, Tmax]
(1)

+ boundary conditions. Solutions u(·, t;µ) live in a (Sobolev) spaceW for each t ∈ [0, Tmax].

• Simulation requests need to be answered rapidly or repeatedly for many different parameters, e.g. de-
sign optimization, control, parameter estimation, real-time applications.

Reduced basis recipe:

1. Discretize the problem in a H dimensional discrete function spaceWH e.g. in a finite volume space.

u0
h(µ) = P [u0(x;µ)]

LI(µ,∆tk)[uk+1
h (µ)]− LE(µ,∆tk)[ukh(µ)] = 0

(2)

2. Generate an N � H dimensional reduced basis space
WN ⊂ WH by approximating the manifold M :={
ukh(µ)|µ ∈ P , k = 0, . . . , K

}
. The generating algo-

rithm iteratively chooses badly approximated snap-
shots from a training subset of M and adds them to
an orthonormal basis ofWN .

3. Project the numerical scheme (??) on the lower di-
mensional reduced basis space space and precom-
pute parameter independent parts. This allows low-
dimensional and therefore fast reduced simulations.
The concept of separating parameter and space depen-
dent computations is called offline/online decomposi-
tion.

4. Reconstruct the low dimensional solution or evaluate
an output functional. Note, that the latter is prefer-
able, because it makes the reduced simulations inde-
pendent of any high-dimensional data.
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Remarks:

• If the implicit operator is non-linear, a Newton scheme needs to be applied requiring an efficient eval-
uation of the Fréchet derivative of the discrete operators.

• Rigorous and efficiently computed a posteriori error estimators are available for verification and for
efficiently searching for new snapshots during the reduced basis generation process.

Results

As a test case, we present reduced basis simulations for a convection-diffusion problem on a parametrized
geometry. The setting allows many applications like e.g. groundwater flow via the Richard’s equation.
The implemented numerical scheme is a semi-implicit finite volume discretization on a structured grid and
a first order time discretization. The numerical scheme includes a gradient reconstruction as proposed
in [5], because through the geometry parametrization, we get a diffusion tensor in the partial differential

equation on the reference domain.
It can be observed that only few reduced basis vectors suffice to approximate the high dimensional solu-
tions uh(µ), but the implicit operator needs to be approximated fairly accurate by the empirical operator
interpolation.

Numerical solutions for µ = (0.0, 0.0) at timesteps t = 0.0, t = 0.75, t = 1.5.

Numerical solutions for µ = (0.2, 0.2) at timesteps t = 0.0, t = 0.75, t = 1.5.
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Figure 1: RB error convergence on 100 test samples

dimension time [s]
H = 40000 24.3675
N = 7,M = 267 1.2224
N = 7,M = 800 2.0501
N = 14,M = 267 1.246
N = 14,M = 800 2.104
N = 20,M = 267 1.2707
N = 20,M = 800 2.1127

Table 1: average time measurements on 100 test samples

Dimension ofWH: 40000
Time gain factor for online phase: ≈ 10

Empirical operator interpolation

Efficient decomposition into offline and online computations for simulation data is simple, if the dis-
cretization operators and the problem data

• are linear and

• depend affinely on the parameter µ.

For non-linear problems or problems with complex parameter functions, we approximate the operators
with empirical operator interpolation.

Idea: Approximate operator with few point evaluations

1. Build a collateral reduced basis space spanned by op-

erator evaluations WM := span
{
L(µi)[u

ki
h (ui)

}M
i=1

.

Each of the base functions is associated with an inter-
polation point xm.

2. If operator evaluations ym(µ;uh(µ)) := L [uh(µ] (xm)
in the interpolation points depend only on a small num-
ber of the argument function’s degrees freedom, we call
the operator localised. In that case the interpolation

IM [L(µ)[uh(µ)]] :=

M∑
m=1

ym(µ;uh(µ))ξm,

can be computed efficiently and provide us with an ad-
missable operator decomposition. Here, (ξm)Mm=1 de-
note nodal base functions of the spaceWM .

Remarks:

•Most discretization operators, like e.g. finite volume or
finite element discretization operators, are localised.

• The Fréchet derivative DIM [L] of an empirical oper-
ator interpolation can also be computed efficiently al-
lowing us to to extend the reduced basis method to
nonlinear problems depending on the Newton method.

Base functions ofWM :
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Abstract

Many important applications from physics, chemistry, economics or other life sciences are modeled by
non-linear partial differential equations. Often, these applications depend on time-consuming parameter
studies or the response needs to be available rapidly. Reduced basis methods are an approach to reduce
the computation time notably. They have gained popularity over the last few years for finite element
approximations of elliptic and instationary parabolic equations [1].
For the method’s central concept - the decomposition in an offline and an online phase - a separation
of the parameter dependent and the space dependent contributions in the discretization operators, is
necessary. This is quite simple, if the space operators are linear and depend affinely on the parameter.
In order to extend the concept for settings where these conditions are not fulfilled, especially for non-
linear problems, the operators need to be approximated somehow.
The device presented here, to make the operators fit into the method’s setting, is called empirical oper-
ator interpolation and adapts ideas from [2].

Software concepts (Current and future work)

Goals:

• Implementation of a framework that cleanly separates the low-dimensional and high-dimensional com-
putations where the fast simulations computations and the communication is provided in the Matlab
based software package RBmatlab. [7]

• Plug-in concept for efficient high-dimensional solvers, like Dune

• Parallelisation of high-dimensional solvers during reduced basis generation.
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Status:

• High dimensional computations with
Dune module dune-rb (linear finite vol-
ume schemes with affinely decomposed
operators.)

• Low dimensional computations with RBmat-
lab

• TCP/IP communication between high-
dimensional solver and RBmatlab
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